2016. november 21., hétfő

Egy bonyolult földrengés okairól: a Kaikoura M7.8 földmozgás, Új-Zéland

Egy hét telt el az Új-Zélandot megrázó 7.8 magnitúdójú földrengés óta. Az eltelt idő alatt több mint 2000 3-as magnitúdónál nagyobb erősségű földmozgás történt és még mindig nincs megállás. Rengeteg kérdés vetődött fel, a földrengés nagyságától az azt kiváltó okokig. Kellett ez az egy hét ahhoz, hogy mindezt világosabban lehessen látni, ami egy meglehetősen bonyolult képet fest fel, nem kevés tanulsággal a földrengések lefolyásáról.

Lemeztektonikai háttér
A földrengések, vulkánkitörések okainak magyarázatában nagy segítséget ad a lemeztektonika modellje. E szerint a Föld külső, merev burkát a földkéregből és a földköpeny legfelső részéből álló litoszféra alkotja. Ez a réteg azonban nem folyamatosan öleli körül bolygónkat, hanem nagyobb és kisebb darabokra, úgynevezett kőzetlemezekre tagolódik. Ezek a kőzetlemezek egymáshoz képest mozognak – távolodnak, közelednek vagy egymás mellett elcsúsznak. Két kőzetlemez ütközése, egymásnak feszülése során az számít, hogy melyiknek milyen a sűrűsége. A nagyobb sűrűségű kőzetlemez a másik alá bukik, amit szubdukciónak nevezünk. Az óceáni kőzetlemezek sűrűsége nagyobb, mint a kontinentális kőzetlemezeké, azaz mindig az óceáni kőzetlemez bukik le és nyomul be a földköpenybe. A kontinentális kőzetlemez sűrűsége kisebb, mint a földköpeny anyagáé, azaz ezért ez nem képes a mélybe nyomulni. Ha két kontinentális kőzetlemez ütközik, akkor egymásra torlódnak és hegyláncokat emelnek ki (ezt kollíziónak nevezzük; pl. Alpok, Himalája). A Földön kijelölhetőek a kőzetlemez távolodási területek (itt találhatóak az óceáni hátságok), a szubdukciós zónák (pl. a Csendes-óceánt körülölelő Tűzgyűrű) és vannak ismert kőzetlemez elcsúszási zónák is (pl. Szent András törésvonal). A földrengések többsége a szubdukciós területekhez kapcsolódik, de nem kizárólagosan, olvashatunk erről például az olaszországi földrengések kapcsán is, ahol a földkéregben lévő széthúzásos erők okozzák a földmozgásokat. Szintén e példán láthattuk azt is, hogy minél jobban szűkítjük a területet, a lemeztektonikai kép annál bonyolultabb, és nem biztos, hogy a nagy léptékű lemeztektonikai gondolkodás segít az események megértésében. Új-Zéland példája is ilyen.


Új-Zéland lemeztektonikai környezete (forrás: Wikiwand) és a november 18-ig regisztrált M>3 földrengések epicentrumai (Forrás: GNS Science)

Új-Zéland az Ausztrál- és a Pacifikus-kőzetlemez határán fekszik. Az Északi-szigettől keletre húzódó határ mentén az utóbbi – átlagosan 5 cm/év sebességgel mozgó – kőzetlemez bukik az Ausztrál-lemez alá. Délebbre haladva megváltozik a helyzet és a Déli-szigettől délnyugatra lévő határ mentén már az Ausztrál-kőzetlemez bukik a Pacifikus-lemez alá (amennyiben két óceáni jellegű kőzetlemez feszül egymásnak, akkor a közöttük lévő sűrűségkülönbség, amit nagymértékben megszab a kőzetlemez kora, határozza meg az alábukás jellegét). A két szubdukciós zóna között húzódik az Alpi-törészóna, ahol a kőzetmozgás alapvetően oldalirányú. Ennek északkeleti részét Marlborough törészónának nevezik, ahol a töréseket jelző vetők szétseprűződnek. Ezek az egyedi vetők is többnyire jobbos oldalelmozdulásos, ún. ’strike-slip’ jellegű töréseket takarnak. A legdélebbi vető a Hope-törés, ami mentén az átlagos elmozdulás évi 20-25 mm (most láthatjuk mit is jelentenek ezek az átlagos számértékek: hosszú évekig semmi nem történik, aztán egy-egy alkalommal a vető behozza a lemaradást és akár méteres elmozdulások is történnek). A Hope-törés keleti végén azonban változik a kőzettest elmozdulási irány: a Jordan-vető mentén feltolódásos mozgás történik, ami évi 4 mm nagyságrendű. Itt tehát már egymás felé közeledő kőzetlemezek okozzák a kőzettest elmozdulásokat. A Kaikoura térségben húzódó hegyvonulaton az emelkedés mértéke már évi 4-6 mm, ami az egyik legnagyobb Új-Zélandon. Nem véletlen tehát, hogy ez tekinthető Új-Zéland földrengésekben egyik legveszélyesebb területének. A novemberi földrengés a Hope-töréstől délre indult, de kiterjedt a tágabb környezetre is és egyre inkább északkelet felé vándorolt, aktivizálva további vetőket is.

A tetthely: a Marlborough törészóna tektonikai képe (Forrás: Benson és társai, GSA Bulletin és Wikipedia)

Furcsaságok egy földrengés körül
A november 14-i földrengés több, a megszokott földmozgásoktól eltérő jelleget mutatott. Egy kis erősségű földmozgással indult, majd jó egy perc után érte el a legnagyobb intenzitását. Továbbá, a legnagyobb töréses elmozdulás nem az epicentrum környezetében, hanem attól jó 100 kilométerre északra történt. Viszonylag kiterjedt területet érintett a töréses deformáció. Végül, a kapcsolódó szökőár lokális jellegű és nem túl magas hullámokkal járó volt.

Aktivizálódott törések és ahhoz ez a felszínen látható a Hundalee törés mentén(Forrás: GeoNet)

Mechanizmus, elmozdulások
A térségben 1950 előtt több nagy földrengés is volt, majd ezt követően nyugodttá vált a terület. Ez a nyugalom 2009-ben szakadt meg és úgy tűnik, hogy most egy újabb intenzív földmozgásos időszak kezdődött. A november 14. éjjeli földrengés tulajdonképpen kettő az egyben volt. Ez azt jelenti, hogy két eltérő jellegű földmozgásból állt: egy egymásra tolódó, és egy egymás mellett elcsúszó (ún. ’strike-slip’) földrengéspárból. Az erős földmozgás mintegy 2 percig tartott, azaz meglehetősen hosszú volt. A földrengés ahhoz a ritka földmozgásokhoz tartozott, amit először a 2010-es darfieldi eseménynél figyeltek meg, miszerint egyszerre több vető aktivizálódott és történt mind vertikális, mind oldalirányú elmozdulás. A függőleges mozgáshoz egy kisebb szökőár is kapcsolódott. A néhány méter magas hullámok azonban csak egy szűk területre korlátozódtak, aminek az lehetett oka, hogy a kőzettest elmozdulás is csak egy kisebb területet érintett és közel volt a partvonalhoz.
A modern GPS adatok segítségével részleteiben is sikerült rekonstruálni a tektonikai mozgásokat. A Kekerengu-törés mentén például az oldalelmozdulás mértéke elérte a 10 métert! A Campbell-fok, ami a Déli-sziget legészakibb pontja, 2 métert mozgott el észak-északkeleti irányba, miközben majdnem 1 métert emelkedett. A földrengés központjához közeli Kaikoura is 1 métert észak felé mozgott és 70 centimétert emelkedett. Mindezt másodpercek alatt! A földrengés Új-Zéland távolabbi területein is változásokat idézett elő, amelyek néhány centiméteresek voltak. E mellett, 80000-100000 kisebb-nagyobb lejtőcsuszamlás is történt, ami helyenként utakat, síneket vágott át, vízfolyamokat gátolt el, ami jelentős árvíz veszélyt jelenthet a jövőre amennyiben ezek a gátak átszakadnak.

Egy rövid mondatban: A földrengést (avagy földrengés sorozatot) az egymásnak feszülő lemezhatáron a Pacifikus-kőzetlemez hirtelen alábukása indíthatta el, ami megemelte a felette lévő kőzetlemezt, továbbá mivel az alábukás ferde szögben történhetett, ezért aktivizálta a Marlborough törészóna oldalelmozdulásos vetőit, ahol dominószerűen rakódott át a feszültség feloldás az északra lévő törésvonalakra, amelyek mentén kisebb-nagyobb jobbos nyírásos elmozdulások történtek.

Jobbos oldalirányú elmozdulás a Kekerengu törés mentén: a ház melletti beálló út (a képen a háztól jobbra) 10 méteres eltolódást mutat! (Forrás: Alex Perrottet, RadioNZ és GeoNet



Lejtőcsuszamlások: vasúti sínt eltoló, illetve folyóvizet felduzzasztó földcsuszamlás (Forrás: ABC News és NZ Herald)

A földrengés mérete
A GeoNet szerint ez volt a térség egyik legbonyolultabb földrengése, amelynek nagyságát, fészekmélységét nem volt egyszerű meghatározni. A szakemberek végül az előzetes 7.5 magnitúdó becslést M7.8-ra emelték. A földmozgás nagyságának meghatározásában az egyik nehézség abban rejlett, hogy a vetők menti elmozdulásokhoz kapcsolódó földmozgások viszonylag hosszú ideig (akár egy percen keresztül) tartottak, ami miatt a megszokott módszerek nem voltak alkalmasak a felszabaduló energia kiszámításához és az összes szeizmikus mérőállomás adatait, valamint helyszíni megfigyeléseket (törések nagyságának és hosszának felmérése) kellett összegyűjteni ehhez. Az M7.8 magnitúdó jelzi, hogy a földrengés jelentős energiát szabadított fel, viszonylag nagy területet érintett és a szokottnál hosszabban tartott. A tíz fokozatú módosított Mercalli intenzitás skálán (ami azt méri, hogy a megfigyelések szerint milyen hatású volt, mennyire lehetett érezni, milyen károkat okozott a földrengés) a földmozgás a törések közelében elérte a MMI VIII fokozatot, ami súlyosnak tekinthető, míg Wellington környékén VI-VII nagyságú volt, ami erősnek tekinthető. Szerencsére, a halálos áldozatok száma minimális, egyelőre két halálesetről tudunk.
Végül, fontos megjegyezni, hogy a nagy földrengésnek NINCS köze a média által hívott „szuperhold” jelenséghez. A Hold viszonylagos közelsége (ami korántsem olyan drámai, mint amit az elnevezés sugall) nem okoz olyan gravitációs vonzásbeli különbséget, ami kőzettest elmozdulásokat vált ki, mint ahogy nem hat a tűzhányók működésére sem!

Új szárazföld jött létre
A november 14-i földrengés egyik látványos következménye, hogy a Kaikoura és a Campbell-fok közötti partvidék mintegy 0.5-2 méter nagyságban megemelkedett. Ez azt jelenti, hogy az egykori sekély tengeri aljzat a felszínre került, ezzel a szárazföld nagysága megnőtt. Ennek az az oka, hogy a földmozgásnak itt egy függőleges elmozdulási komponense volt (erre vezethető vissza a kapcsolódó szökőár is), azaz a kompressziós, azaz összenyomódásos feszültség úgy szabadult fel, hogy egy ferde vető mentén a szárazföldi terület feltolódott (ez valahol nem más, mint a hegységképződés egy piciny eleme). Ez nem teljesen ritka esemény, Új-Zélandon korábban is történtek ilyen elmozdulások. 1931-ben egy hasonló nagyságú földrengés során Napier közelében 1-2 méteres függőleges eltolódás történt, ennek köszönhetően jött létre az új szárazföldön a település közeli reptér. Korábban, 1855-ben egy M8.2 földrengés során Wellington nagy része emelkedett hasonló mértékben, ahol végül egy fontos útvonal létesülhetett. A Kaikoura földrengésnek azonban ez csak egyik komponense volt, a többi vető mentén főleg oldalelmozdulások történtek. Ez az új helyzet a sekélytengeri környezetben élő, állandó vízborítást igénylő növények és állatok számára katasztrofális hatású és minden bizonnyal átrendezi az életteret.

Megemelkedett és felszínre került sekély vízi terület Kaikoura közelében (Forrás: GeoNet, Tonkin+Taylor, Kósik Szabolcs)

Megmentett legelésző tehenek
A földrengés után bejárta a világsajtót az a kép, ami három legelésző tehenet mutat. A két fejlett tehén és egy boci, mintha mi sem történt volna, folytatja tevékenységét, nem véve tudomást arról, hogy körülöttük, egy földcsuszamlás következtében, szó szerint beomlott a föld és már csak egy talpalatnyi kiemelkedésen vannak. A teheneket megmentették és most már kiterjedtebb füves területen folytatják a lakmározást. Az eset nem egyedüli, egy másik hír két további hasonlóképpen járt tehénről számolt be.

Egy földcsuszamlás következtében feldarabolódott legelő és egy ennek következtében egy szűk kiemelkedésen maradt legelésző tehenek (Forrás: www.stuff.co.nz és The Landslide blog)


Best Blogger Tips

2016. november 11., péntek

A közép-olaszországi földrengések okairól...

Augusztus 24-én délután egy erős, 6,2 magnitúdójú földrengés rázta meg Olaszország középső részét. Az epicemtrum közel volt Accumolihoz, a földmozgás fészekmélysége nagyon sekélyen volt, mindössze 4 km mélyen. Ez a földrengés mindössze 45 km-re történt L'Aquilától, ahol 2009-ben volt egy ehhez hasonló nagyságú és tragikus kimenetelű földrengés, ami után pereskedés, olasz szakemberek bírósági elítélése, majd felmentése történt. Az idei augusztusi földrengés is sok halálos áldozattal járt, közel 300-an vesztették életüket (ebből 234-en Amatrice településen. Ugyanitt, szintén októberben, de 1639-ben volt már egy tragikus kimenetelű földrengés, amikor több mint 500-an haltak meg)! E mellett számos kulturális örökség is megsemmisült, mint például a St Agostino templom. A földrengést Rómában is érezni lehetett.



Sokkoló felvételek a földrengések előtt és után... (További fotók)

A szerencsétlenség ismét bírósági vizsgálatokat gerjesztett. Most azonban a nem földrengésbiztos épületek, az elmaradt rekonstrukciók és épület megerősítések miatt. Olaszország e része szeizmikusan kiemelten veszélyeztetett, ráadásul tele van középkori falvakkal, ahol a házfelújításokra szánt jelentős összegű pénzek sokszor eltűntek. A jelentős károk másik oka magában a földrengés jellegében keresendő. A fészekmélység sekélysége azt jelentette, hogy a felszínen jóval nagyobb és koncentrált károk keletkeztek. Nem volt azonban ez a lehetőség sem ismeretlen, erre is számítani lehetett. Októberben aztán újabb sokkoló földmozgások jöttek, köztük egy 6,5 magnitúdójú, ami az elmúlt 36 év legerősebb földrengése volt Olaszországban. A rengések a korábbi földmozgások közelében pattantak ki, mégpedig egy olyan területen, ami az 1997-es és a 2016. augusztusi földrengés hipocentrumok közé esik és ahol korábban több mint 100 éve nem volt nagyobb földrengés. A szakemberek azonban előre figyelmeztettek: ez a látszólagos nyugalom nem fog sokáig tartani!


A 2016-os földrengések epicentrumai az INGV térképein, valamint kapcsolata a 2009-es L'Aquila közeli földrengéssel. Forrás: Temblor

A földrengések epicentrumainak összehasonlítása azt mutatta, hogy 2009 után egyfajta dominó-effektusként a földmozgások észak-északnyugat felé haladnak. Szerencsére az augusztusi amatricei tragikus földrengés után a térség településein kitelepítették a lakosságot, ennek köszönhető, hogy októberben nem voltak halálos áldozatok (néhány szívrohamban meghalt személyen kívül). Ez felhívja a figyelmet arra, hogy bár földrengést nem lehet pontosan előrejelezni, azonban felkészülni és adott esetben védekezni lehetséges, amiben kulcsszerepet kapnak a szeizmológus szakemberek! Az időben meghozott intézkedések emberek ezreit óvták meg (1915-ben, e helytől mintegy 100 km távolságban, egy hasonló erejű földrengés 32 ezer áldozatot követelt!). De vajon miért ennyire földrengésveszélyes Olaszország középső vidéke? Csak az elmúlt 2000 évben több mint 400 súlyos földrengés történt Olaszországban. Ezzel együtt a térséget a szeizmikusan közepesen veszélyeztetett területnek tartják, legalábbis a földmozgások nagysága (magnitúdója) szerint. Ugyanakkor e terület veszélyességi kitettsége, sebezhetősége kiemelten magas, ami a nagy népsűrűséggel, a többnyire középkori építésű településekkel magyarázható. Ehhez járul hozzá még egy tényező, mégpedig a gyakori sekély fészekmélység, ami adott nagyságú földrengés esetében jelentősebb rombolást okoz. Földtani értelemben az alábbiakban kell keresni a magyarázatot.


A mediterrán térség földtani, tektonikai helyzetét az Afrikai- és Eurázsiai kőzetlemez közeledése határozza meg. Közöttük azonban számos kisebb kőzetlemez is található. Ezek mozgása az elmúlt 20-30 millió évben alábukási öveket, felgyűrt hegyláncokat és kinyíló medencéket hozott létre. Forrás: earthjay.com

Az Afrikai- és Eurázsiai-lemez közeledése nagymértékben meghatározza a Földközi-tenger térségében történteket. Azonban e két közeledő satuperem között több, kisebb-nagyobb kőzetlemez is található, ami e közeledés következtében forgolódik, keresi a legjobb helyét. A Földközi-tenger térségében e mellett két alábukási folyamat (a Kalábriai és a Hellén-ív mentén) is zajlik, amikor kőzetlemezek buknak a másik alá és nyomulnak be a földköpenybe (ennek neve szubdukció). A kőzetlemez közeledés egyik legmarkánsabb következménye azt Alpok felgyűrt vonulatának kialakulása. Az Appenninek vonulata szintén egy kőzetlemez alábukási folyamat eredménye. A szubdukció frontja fokozatosan haladt hátrafelé délkeleti irányban, ami mögött felnyílt a Tirrén-tenger medencéje. Ez utóbbi azt jelenti, hogy itt kőzetlemez szétsodródás történik mégpedig a szubdukció frontjának hátrálása miatt. A felső kőzetlemezt ugyanis húzza magára az alábukó kőzetlemez, ami ezáltal vékonyodik. A szubdukció a Ligur-tenger aljzatának földköpenybe való nyomulásával végül kb. 4 millió éve leállt és ekkor már kontinentális kőzetlemezek feszültek egymásnak (ennek neve kollízió). Ez gyűrte fel végül az Appenninek vonulatát, miközben a mélyben az alábukó kőzetlemez fokozatosan leszakadt. Az Adriai mikrolemez, Olaszországtól keletre, továbbra is mozog északnyugat felé, ütközve az Eurázsiai-lemezzel a Dinári térség mentén és emiatt számos földrengés pattan ki e zónában is. A Tirrén-tenger aljzatának tágulásos mozgása jelenleg is tart és ez a tektonikai helyzet alapvető változásokat idézett elő. Az Appenninek gyűrődési és feltolódási vetőhatárai felújultak, azonban pont ellentétes, mégpedig húzóerők hatására normál vetőkké váltak. Másképpen szólva, kb. 2 millió éve az egykor összenyomásos tektonika széthúzásos, azaz extenziós tektonikai helyzetté vált.


A Mediterrán térség kialakulása és kőzetalábukási övei (forrás: Spakman és Wortel



A Mediterrán térség jelenlegi feszültség irányai. Az Appenninnek mentén széthúzásos erők lépnek fel (forrás: Chris Rowan), ez pedig normál vetők menti lezökkenéses elmozdulást előidéző földrengésekhez vezet, amit a jobboldali ábra illusztrál (Forrás: ingvterremoti.wordpress.com

Ez az extenziós feszültségtér az Appenninnek mentén földrengéseket okoz, míg annak nyugati előterében, az olasz csizma nyugati peremén a vulkáni működést segíti elő. Fontos hangsúlyozni azonban, hogy az Appenninekben zajló földrengések és az attól nyugatra zajló vulkáni működés között NINCS közvetlen kapcsolat, azaz ezek a földrengések NEM váltanak ki vulkáni működést. A földrengések között azonban vélelmezhető a kapcsolat, azaz a 2009-es l'aquilai földrengés okozhatott olyan feszültség átrendeződést, ami további lezökkenéses földmozgásban folytatódott idén augusztusban, ami aztán további tektonikai vonalakat is aktivált és folytatódott ez a sorozat októberben. Ezt az INGV munkatársai is felvetették és ezért tudtak hatékonyan fellépni az októberi rengés előtt és kitelepíteni lakosságot. Ross Stein, a Temblor portálon részletesen értékelte a jelenlegi helyzetet és a lehetséges jövőbeli eseményeket is. Az alábbi ábrán az extenziós feszültségtérben kialakuló normál vetők nyomvonalait láthatjuk az októberi földrengés által érintett térségben. Ezek a vetők olyannyira fiatalok, hogy nem könnyű a kitérképezésük a felszínen. A Norcia közeli vető viszont világosan kirajzolódik. Ettől keletre található a Vettore-Bove vető, ahol a felszültség felszabadulás és ennek következtében kőzettest elmozdulás történt. Ennek a felszínen is látható jelei vannak, az elmozdulás helyenként közel 1 méter! A feszültség ennek következtében délnyugat felé tevődött át és végül a Norcia közeli Preci-vető közelében pattant ki az október 30-i földrengés. A jövőben messze nem zárható ki, hogy ez a domino-effektus, feszültség-átadás újabb vetőkre folytatódik, ami további földrengéseket okoz.

Extenziós feszültségtérben kialakuló normál vetők nyomvonalai az októberi földrengés által érintett térségben. Forrás: temblor


Látványos lezökkenéses elmozdulások az októberi földrengéseket követően. P. Galli és Marco Anzidei felvételei


Best Blogger Tips

2016. november 10., csütörtök

Újra - tűzhányók, vulkánkitörések, vélemények, elemzések, háttéranyagok!

Hosszú szünet után igyekszem újra rendszeres bejegyzésekkel jelentkezni a Tűzhányó blogon! Az elmúlt időszak nagyon sok feladatot rótt rám, ami miatt nem volt időm a bejegyzések írására. Sok érdeklődővel, csatlakozó olvasóval áradnak viszont a hírek a Tűzhányó blog Facebook csoportjában. Jól eső érzés azonban kapni az érdeklődő leveleket, hogy mikor lesz újra Tűzhányó blog bejegyzés, azaz van igény a némileg hosszabb írásokra is. Kezdődjön tehát most egy gyors hírrel, hogy aztán nem sokkal később jöjjön a beharangozott némileg hosszabb elemzés a közép-olaszországi földrengésekről!
Nem tagadom, hogy az egyik kedvenc vulkánom a szumátrai Sinabung, amelynek működését még ilyen távolból is folyamatosan követem. Hosszú-hosszú szunnyadás után felébredve 2010-ben nagy robbanásos kitörésekkel tért magához, majd kis szünet után 2003-tól megállás nélkül működik és ma a Föld egyik legaktívabb és legveszélyesebb tűzhányója. A kráterperemen újra és újra viszkózus, azaz nehezen folyós láva türemkedik ki, majd néhány száz millió köbméter térfogatot elérve, saját súlya alatt összeomlik. November 9-én sűrű felhő borította a tűzhányót és láthatatlanul, de dübörögve érkeztek az izzófelhők a hegy délkeleti oldalán. Lezúdulásukat csak a szeizmográfok rögzítették. Néhány nappal korábban még méretes lávadóm meredezett a hegycsúcson, november 10-re ez az utolsó darabig eltűnt! Nagy szerencse, hogy ez nem okozott tragédiát, nem tartózkodott senki sem a közelben!



A Sinabung kráterperemén kidagadó, már részben megcsonkult lávadóm 2016. október 28-án és ennek hűlt helye november 10-én. Fotó: Sadrah Peranginangin és Maz Yons

A természet, különösen a tűzhányók, örök változásban! Hatalmas piroklaszt-árak zúdulhattak le a vulkán oldalán, jóval nagyobbak, mint amelyek november 1-én, amikről Sadrah és Tibta Peranginangin közölt fantasztikus felvételeket, a forró hamurétegből felemelkedő porördögökkel, avagy hamuördögökkel!


November 1-én már hatalmas izzófelhők rohantak le a Sinabung oldalán... Fotók: Sadrah és Tibta Peranginangin.

>


...a november 9-én, felhők takarásában lezúduló izzófelhőket azonban csak a szeizmográfok erősen kilengő jelei dokumentálták. Fotó: Beidar Sinabung

Best Blogger Tips