Az MTA-ELTE Vulkanológiai Kutatócsoportnak két jelentős tanulmánya jelent meg, amelyben a közös vonás, hogy régmúlt vulkánkitörések idejét határozták meg és ezek alapján vontak le következtetéseket. A Tűzhányó blog e tudományos munka (ezekben vezető szerepet játszott munkatársam, Lukács Réka és doktorandusz hallgatóm, Molnár Kata) hátterét tárja fel, először ismertetve a kormeghatározási munka lényegi elemeit, majd a következő két blog bejegyzésben az új koradat eredményeken alapuló következtetéseket mutatjuk be.
Hogyan lehet meghatározni a földtörténeti múlt eseményeinek idejét? Izgalmas kérdés mindez és számtalan tudományterülethez ad nélkülözhetetlen adatokat. A kormeghatározás fizikai háttere a radioaktív bomlás folyamata, amit bő egy évszázada fedeztek fel. Nem sokkal a felfedezés után már megindult a földtudományi alkalmazása, urán tartalmú ásványok korát határozták meg, majd a figyelem gyorsan egy egyszerűnek kérdés megválaszolása felé fordult: milyen idős a Föld? Arthur Holmes könyve a Föld koráról forradalmi változást indított el (és kezdetben persze nem kevés felzúdulást, ellenállást, vitát váltott ki).
A radioaktív bomlás elsősorban a nagy tömegszámú izotópok esetében lép fel, amikor egy elem neutronban viszonylag gazdag vagy szegény, ezért nem stabil izotópja (izotópnak nevezzük egy adott elem különböző neutronszámú, azaz tömegszámú atomjait) energia felszabadulás közben bomlik és ennek során egy másik elem izotópja keletkezik. A radioaktív bomlás időbeni lejátszódása egy állandó folyamat, a felezési idő megadja, hogy mennyi idő alatt bomlik le a kezdetben jelenlévő összes radiogén atommag fele. A különböző radioaktív folyamatok (adott bomló izotóp és keletkező izotóp rendszerére vonatkoztatva) felezési ideje nagy pontosággal meghatározható és ez adja alapját a kormeghatározásnak.
A kormeghatározás, azaz egy földtörténeti múltbeli esemény idejének meghatározása (ezt geokronológiának nevezik) során nem időt mérünk, hanem vizsgáljuk egy adott képződményben a radioaktívan bomló és a radioaktív bomlás során keletkező izotópok mennyiségét. A földtudományban olyan izotóp párokat használnak e célból, amelyek (1) felezési ideje nagy (jellemzően több százmillió év vagy ennél is nagyobb) , azaz nem bomlott le még az összes instabil izotóp; (2) mind a bomló, mind a keletkező izotóp mennyisége mérhető nagyságban van; (3) nagy pontossággal ismert a felezési idő. A különböző izotóp párok közül manapság a leggyakrabban az urán és tórium instabil izotópjait és a radioaktív bomlás során keletkező ólom izotópokat mérik, e mellett azonban még számos gyakran használt izotóprendszer van, mint például a Kálium és Argon izotóprendszer. Ha a felezési idő kicsi, akkor időben csak korlátozottan tudunk „visszalátni”, azaz csak egy meghatározott földtörténeti korig tudjuk meghatározni egy esemény bekövetkezésének idejét. Ilyen rendszer például a szénizotópos módszer, ahol a radioaktívan bomló izotóp a szén 14 tömegszámú atomja. A felezési idő ebben az esetben 5730 év, ami azt jelenti, hogy legfeljebb 50 ezer évvel ezelőtti esemény korát tudjuk meghatározni. Ugyanakkor, ez a kormeghatározás pontos adatot ad a „közelmúlt” eseményeinek idejéről, amikor a nagy felezési idejű izotóprendszerek nem alkalmazhatók, mert még nem telt el annyi idő, hogy mérhető mennyiségű származék izotóp keletkezzen a lassú folyamat során. A szénizotópos kormeghatározáshoz azonban kell a szén, azaz szerves anyag. Vulkáni működések korát vagy a vulkáni képződménybe zárt, a magas hőmérséklet miatt elszenesedett növénymaradványokon határozzák meg vagy a vulkáni képződmény alatt lévő talajban található szerves anyagot használják fel erre. Térségünk legutolsó vulkánkitöréseinek idejét szénizotópos módszerrel határoztuk meg. Elsőként a japán Moriya és kutatótársai közöltek pontos szénizotópos kor adatokat, majd Harangi Szabolcs Molnár Mihállyal és kutatótársaikkal együttműködve határozták meg a legfiatalabb kitörés korát a székelyföldi Csomád vulkáni képződményében talált szenesedett famaradványok elemzése során. Innen tudjuk, hogy az utolsó vulkáni működés a jelenlegi koradatok alapján 31230 és 32700 éve volt.
Az 50 ezer évnél régebben történt vulkánkitörések esetében manapság a legelterjedtebben használt geokronológiai módszer a cirkon kristályokon végzett kormeghatározás. Miért pont a cirkon, ami egy cirkónium-szilikát ásvány és első pillantásra nem látunk benne radioaktívan bomló izotópot? Az ásványok kristályrácsába a fő alkotókon kívül, elemhelyettesítéssel beépülhetnek nyomnyi mennyiségben idegen elemek is, ha azok ionjainak mérete és töltése közel van a fő komponenséhez. A cirkon ásványban így a cirkóniumot helyettesíteni tudja a hafnium, továbbá az urán és tórium is. Az uránnak két radioaktívan bomló, instabil izotópja van, a 238 és 235 tömegszámú izotópok, míg a tórium izotópjai közül a 232 tömegszámú atom stabilizálódik radioaktív bomlással. Érdekes módon mindhárom esetben a származék izotóp az ólom valamelyik tömegszámú atomja, a 206, a 207, illetve a 208 tömegszámú izotóp. A radioaktív bomlás ezekben az esetekben nem egy egyszerű folyamat, hanem több lépcsőben megy végbe és közben hélium (He) atommagok szabadulnak fel (ezt alfa-sugárzásnak nevezzük). A He atom 4 tömegszámú, azaz a teljes radioaktív bomlási folyamat során: 8, 7, illetve 6 He atom szabadul fel.
Ezek a nagyon leegyszerűsített fizikai alapok, azonban hogyan lesz ebből egy régmúlt esemény idejének meghatározása? Mit kell a geokronológusnak tenni? A cirkon egy ideális ásvány, mivel van benne mérhető mennyiségű urán, így idő elteltével a radioaktív bomlás során egyre több ólom izotóp (és He izotóp) keletkezik. A modern analitikai műszerekkel már kis mennyiségben is nagy pontosággal mérhetők az izotópok mennyisége vagy izotóparányok értéke. Sőt, most már ott tartunk, hogy lézersugár vagy ionsugár alkalmazásával már nagyon kis mennyiségű anyagból is lehet izotóp meghatározást végezni. Ez pedig egy óriási előrelépés! A cirkon kristályok önmagukban is picinyek, méretük az emberi hajszál átmérőjéhez hasonló: általában 100-300 mikrométer (azaz 0,01-0,03 milliméter). A műszeres technika ma már lehetővé teszi, hogy e piciny ásványokat lézeres vagy ionsugaras nyalábbal gerjesszük, ezzel egy akár egy 30-40 mikrométer átmérőjű területről is tudunk elegendő anyagot a tömegspektrométerbe juttatni, ahol az izotópok mérése történik. Ez azt jelenti, hogy akár megtudjuk mérni az ásvány középső és szélső részének is az izotóparányait, azaz megtudjuk határozni a keletkezés korát. A kérdés azonban még mindig az, hogy miképpen jutunk az izotópok mennyiségéből az időhöz?
Az első lépést az jelenti, hogy egyáltalán össze kell gyűjteni e piciny kristályokat! A kőzeteket ehhez „porrá” kell törnünk és a 100-300 mikrométer nagyságú szemcsék közül ki kell nyernünk a cirkon kristályokat. Ehhez megint jellemző fizikai tulajdonságokat kell segítségül hívni. A cirkon kristály sűrűsége viszonylag nagy, nagyobb, mint általában a kőzeteket alkotó ásványoké. A módszer lényeget tehát, hogy sűrűség szerint választjuk el az apró szemcséket és a legnagyobb sűrűségű szemcsék közé várjuk a cirkon ásványokat. Ez már egy nagy odafigyelést igénylő, több lépcsős, aprólékos munka, ami egyáltalán megalapozza azt, hogy méréseket végezzünk. A vulkáni képződményből kinyert cirkon kristályokon történik az izotópmérés. Azonban mielőtt drága műszerek drága mérési idejét használjuk, pontosan meg kell határozni, hogy mit szeretnénk tudni, egyáltalán minek az idejét szeretnénk meghatározni? Itt pedig nem kerülhetjük meg, hogy ismét ne kanyarodjunk vissza a fizikai alapokhoz!
Ahhoz, hogy izotópok mennyiségéből, az adott izotóprendszerre jellemző felezési idő figyelembe vételével meg tudjuk határozni a jókeletkezési időt, fontos feltétel, hogy a keletkezés után az izotópok a kristályba maradjanak, azaz zárt maradjon a rendszer (azaz csak annyi származék izotóp legyen, ami a radioaktív bomlás során keletkezett és annyi instabil izotóp, ami a radioaktív bomlás után visszamaradt). Ez az állapot különböző izotópok, különböző ásványok esetében más és más hőmérséklet elérése után áll be. Ezt a hőmérsékletet záródási hőmérsékletnek nevezzük. Ez pedig egy kulcspont a geokronológiában: a kormeghatározás során azt az időt határozzuk meg, amikor a kristály a záródási hőmérséklet alá hűlt (e hőmérséklet felett ugyanis az izotópok még nem kötődnek meg a kristályban, onnan eltávozhatnak, így mérésükkel nem tudjuk pontosan megmondani, mennyi keletkezett radioaktív bomlással).
Az ásványok keletkezése magmás folyamat során a kőzetolvadékból való kristályosodással történik. A cirkon kristály akkor válik ki, ha a kőzetolvadékban a cirkónium mennyisége már olyan értéket ér el, hogy az olvadék „túltelítetté” válik ebben az elemben. Ez általában 800 Celsius fok alatt történik. A cirkon kristályban kb. 900 Celsius fok alatt már nem távoznak el az U és Pb izotópok, azaz a kristályosodás a záródási hőmérséklet alatt történik. Remek! Ez tehát azt jelenti, hogy a geokronológiai vizsgálattal a cirkon kristályosodás idejét határozhatjuk meg. Nem ez a helyzet a He izotóppal, ami csak 180 Celsius fok alatt marad benn a kristályban. A magmakamrában lévő cirkonból kristályosodása után tehát folyamatosan távozik a radioaktív bomlás során keletkező He. Ahogy azonban vulkánkitörés indul, a 700 Celsius feletti hőmérsékletű magma a felszínre jutva gyorsan lehűl 180 Celsius fok alá. Ekkor tehát záródik már a He is! Amennyiben tehát mérjük a cirkon kristályban lévő He izotópot és az Urán (U) izotópokat, akkor ki tudjuk számolni, hogy a vulkánkitörés óta mennyi idő telt el.
Kiszámolni, kiszámolni… akkor hogyan is határozzuk meg végül az időt? Az elkülönített cirkon kristályokat műgyantába tesszük és addig polírozzuk, amíg feltárul belsejük. Ha egy elektron-mikroszonda műszerrel elektronsugarat bocsátunk rá, akkor láthatjuk is belső felépítésüket: úgy néznek ki, mint az elvágott fák belseje, az „évgyűrűk” ebben az esetben az eltérő környezetben képződött kristálynövekedést jelentik. Az eltérő környezet (hőmérséklet, magma összetétel stb) különböző kémiai összetételű zónákat hoz létre a kristályon belül. A kormeghatározáshoz szükséges izotópok mennyiségét lézer-ablációs ICP-tömegspektrométerrel (ICP=indukciósan csatolt plazma) vagy ionszondával (ekkor oxigén ionsugárral gerjesztjük a mintát, a gerjesztett izotópok itt is tömegspektrométerbe jutnak) mérhetjük. A mérés során ólom és urán izotópok arányát kapjuk meg. A kapott adatok értékelése aztán még egy hosszú folyamat: ismernünk kell a műszer fizikai és kémiai működését, az eredményeket ismert izotópösszetételű mintákkal (sztenderdek) kell összevetnünk, meg kell vizsgálnunk, hogy a kapott adatok alapján valóban fennállhatott a zárt rendszer, stb. A izotóparányokból a felezési idő segítségével, a radioaktív folyamat matematikai egyenletét felhasználva számíthatjuk ki végül a kort, amikor a kristály keletkezett. Így kapunk egy adatsort, mondjuk egy mintából 20-50 egyedi cirkon kristályból mérési eredményeket, különböző korokat. A hélium mérés esetében egy teljes cirkon kristály hélium-izotóp tartalmát mérjük, majd egy másik műszerrel mérjük meg az urán és tórium koncentrációját. A kapott adatokat felhasználva következik a számolás, hogy ez, a radioaktív bomlási folyamat során mennyi idő alatt állhatott elő. Ez egyszerűen hangzik, de mindkét mérés után még hosszadalmas számolások következnek, míg végül eljutunk az áhított eredményhez, egy korhoz, amit szakmailag értelmeznünk kell. A geokronológia tehát nem csak egy egyszerű időt meghatározó, adatközlő tevékenység, hanem egyre inkább egy önálló tudomány, ahol a mérésnek és az azt követő számolásoknak mind nagy szerepe van. Ez elengedhetetlen, hogy a geokronológus által értelmezett kort, aztán be lehessen helyezni egy valamikori történet rekonstruálásába.
Összefoglalóan: az U és Pb izotópok mérésével a cirkon kristályok keletkezési idejét, az U és He izotópok mérésével a vulkánkitörés idejét határozhatjuk meg! Persze, adódhat a kérdés: miért ez nem ugyanaz, időben ez nem közeli folyamatok? Nos, az elmúlt évtized kutatási eredményei világosan rámutatnak: nem, ráadásul ez a két időpont fontos új információt ad! Különböző vulkáni rendszerek esetében ugyanis azt találjuk, hogy a cirkon kristályok keletkezési ideje meglehetősen eltér egymástól, mondhatjuk azt is, hogy szinte mindegyik cirkon kristály máskor keletkezett. Ha ezek időtartamát elemezzük, akkor nem másra következtethetünk, hogy meddig van olyan állapotban a földkéregben, hogy cirkon kristályok válhassanak ki, azaz meddig van olyan állapot, hogy olvadék van jelen a földkéregben, amiben kristályosodás történhet, egyszerűen kifejezve: milyen hosszan áll fenn a magmakamra? Az eredmény pedig első pillanatra meghökkentő: hosszú ez az idő, akár több tíz-, sőt több százezer év a vulkánkitörés előtt! Ezek a geokronológiai vizsgálatok tehát felfedték, hogy a vulkánok alatti magmakamra hosszasan aktív lehet, akkor is, amikor éppen nem működik a tűzhányó, akkor is történhet benne kristályosodás. Vulkánkitörés akkor történik, ha a magmatározóban lévő magma fizikailag kitörésre képes, azaz fizikailag felszínre tud nyomulni, áttörve a felette lévő több kilométer vastag kőzettestet. A Csomád esetében például kimutattuk, hogy az utolsó vulkánkitörés előtt legalább 300 ezer évig létezett az a magmatározó, amiből végül a magma elindult a felszín felé és vulkánkitörést okozott. Ez azonban csak egy kis része a magmatározóban lévő magmának. Még mindig van jócskán, amiből adott esetben egy újabb magmacsomag nyomulhat felfelé és okozhat vulkánkitörést. Amíg a földkéregben van olvadéktartalmú magma, addig ez a lehetőség fennáll! De ez már egy következő történet, ami elvezet a két kutatási eredményhez. Erről szólnak majd a következő blog bejegyzések!
Hogyan lehet meghatározni a földtörténeti múlt eseményeinek idejét? Izgalmas kérdés mindez és számtalan tudományterülethez ad nélkülözhetetlen adatokat. A kormeghatározás fizikai háttere a radioaktív bomlás folyamata, amit bő egy évszázada fedeztek fel. Nem sokkal a felfedezés után már megindult a földtudományi alkalmazása, urán tartalmú ásványok korát határozták meg, majd a figyelem gyorsan egy egyszerűnek kérdés megválaszolása felé fordult: milyen idős a Föld? Arthur Holmes könyve a Föld koráról forradalmi változást indított el (és kezdetben persze nem kevés felzúdulást, ellenállást, vitát váltott ki).
A rádium izotóp alfa-részecske kilökődésével járó radioaktív bomlása és a 238 tömegszámú U izotóp többlépcsős radioaktív bomlási sora, aminek végén 206 tömegszámú ólom izotóp képződik
A radioaktív bomlás elsősorban a nagy tömegszámú izotópok esetében lép fel, amikor egy elem neutronban viszonylag gazdag vagy szegény, ezért nem stabil izotópja (izotópnak nevezzük egy adott elem különböző neutronszámú, azaz tömegszámú atomjait) energia felszabadulás közben bomlik és ennek során egy másik elem izotópja keletkezik. A radioaktív bomlás időbeni lejátszódása egy állandó folyamat, a felezési idő megadja, hogy mennyi idő alatt bomlik le a kezdetben jelenlévő összes radiogén atommag fele. A különböző radioaktív folyamatok (adott bomló izotóp és keletkező izotóp rendszerére vonatkoztatva) felezési ideje nagy pontosággal meghatározható és ez adja alapját a kormeghatározásnak.
A kormeghatározás, azaz egy földtörténeti múltbeli esemény idejének meghatározása (ezt geokronológiának nevezik) során nem időt mérünk, hanem vizsgáljuk egy adott képződményben a radioaktívan bomló és a radioaktív bomlás során keletkező izotópok mennyiségét. A földtudományban olyan izotóp párokat használnak e célból, amelyek (1) felezési ideje nagy (jellemzően több százmillió év vagy ennél is nagyobb) , azaz nem bomlott le még az összes instabil izotóp; (2) mind a bomló, mind a keletkező izotóp mennyisége mérhető nagyságban van; (3) nagy pontossággal ismert a felezési idő. A különböző izotóp párok közül manapság a leggyakrabban az urán és tórium instabil izotópjait és a radioaktív bomlás során keletkező ólom izotópokat mérik, e mellett azonban még számos gyakran használt izotóprendszer van, mint például a Kálium és Argon izotóprendszer. Ha a felezési idő kicsi, akkor időben csak korlátozottan tudunk „visszalátni”, azaz csak egy meghatározott földtörténeti korig tudjuk meghatározni egy esemény bekövetkezésének idejét. Ilyen rendszer például a szénizotópos módszer, ahol a radioaktívan bomló izotóp a szén 14 tömegszámú atomja. A felezési idő ebben az esetben 5730 év, ami azt jelenti, hogy legfeljebb 50 ezer évvel ezelőtti esemény korát tudjuk meghatározni. Ugyanakkor, ez a kormeghatározás pontos adatot ad a „közelmúlt” eseményeinek idejéről, amikor a nagy felezési idejű izotóprendszerek nem alkalmazhatók, mert még nem telt el annyi idő, hogy mérhető mennyiségű származék izotóp keletkezzen a lassú folyamat során. A szénizotópos kormeghatározáshoz azonban kell a szén, azaz szerves anyag. Vulkáni működések korát vagy a vulkáni képződménybe zárt, a magas hőmérséklet miatt elszenesedett növénymaradványokon határozzák meg vagy a vulkáni képződmény alatt lévő talajban található szerves anyagot használják fel erre. Térségünk legutolsó vulkánkitöréseinek idejét szénizotópos módszerrel határoztuk meg. Elsőként a japán Moriya és kutatótársai közöltek pontos szénizotópos kor adatokat, majd Harangi Szabolcs Molnár Mihállyal és kutatótársaikkal együttműködve határozták meg a legfiatalabb kitörés korát a székelyföldi Csomád vulkáni képződményében talált szenesedett famaradványok elemzése során. Innen tudjuk, hogy az utolsó vulkáni működés a jelenlegi koradatok alapján 31230 és 32700 éve volt.
A székelyföldi Csomád eddig ismert legfiatalabb vulkáni képződménye, amelyben szenesedett famaradványok találhatók. Ezek szénizotópos vizsgálata segített meghatározni a vulkáni működés korát
Az 50 ezer évnél régebben történt vulkánkitörések esetében manapság a legelterjedtebben használt geokronológiai módszer a cirkon kristályokon végzett kormeghatározás. Miért pont a cirkon, ami egy cirkónium-szilikát ásvány és első pillantásra nem látunk benne radioaktívan bomló izotópot? Az ásványok kristályrácsába a fő alkotókon kívül, elemhelyettesítéssel beépülhetnek nyomnyi mennyiségben idegen elemek is, ha azok ionjainak mérete és töltése közel van a fő komponenséhez. A cirkon ásványban így a cirkóniumot helyettesíteni tudja a hafnium, továbbá az urán és tórium is. Az uránnak két radioaktívan bomló, instabil izotópja van, a 238 és 235 tömegszámú izotópok, míg a tórium izotópjai közül a 232 tömegszámú atom stabilizálódik radioaktív bomlással. Érdekes módon mindhárom esetben a származék izotóp az ólom valamelyik tömegszámú atomja, a 206, a 207, illetve a 208 tömegszámú izotóp. A radioaktív bomlás ezekben az esetekben nem egy egyszerű folyamat, hanem több lépcsőben megy végbe és közben hélium (He) atommagok szabadulnak fel (ezt alfa-sugárzásnak nevezzük). A He atom 4 tömegszámú, azaz a teljes radioaktív bomlási folyamat során: 8, 7, illetve 6 He atom szabadul fel.
Ezek a nagyon leegyszerűsített fizikai alapok, azonban hogyan lesz ebből egy régmúlt esemény idejének meghatározása? Mit kell a geokronológusnak tenni? A cirkon egy ideális ásvány, mivel van benne mérhető mennyiségű urán, így idő elteltével a radioaktív bomlás során egyre több ólom izotóp (és He izotóp) keletkezik. A modern analitikai műszerekkel már kis mennyiségben is nagy pontosággal mérhetők az izotópok mennyisége vagy izotóparányok értéke. Sőt, most már ott tartunk, hogy lézersugár vagy ionsugár alkalmazásával már nagyon kis mennyiségű anyagból is lehet izotóp meghatározást végezni. Ez pedig egy óriási előrelépés! A cirkon kristályok önmagukban is picinyek, méretük az emberi hajszál átmérőjéhez hasonló: általában 100-300 mikrométer (azaz 0,01-0,03 milliméter). A műszeres technika ma már lehetővé teszi, hogy e piciny ásványokat lézeres vagy ionsugaras nyalábbal gerjesszük, ezzel egy akár egy 30-40 mikrométer átmérőjű területről is tudunk elegendő anyagot a tömegspektrométerbe juttatni, ahol az izotópok mérése történik. Ez azt jelenti, hogy akár megtudjuk mérni az ásvány középső és szélső részének is az izotóparányait, azaz megtudjuk határozni a keletkezés korát. A kérdés azonban még mindig az, hogy miképpen jutunk az izotópok mennyiségéből az időhöz?
Az első lépést az jelenti, hogy egyáltalán össze kell gyűjteni e piciny kristályokat! A kőzeteket ehhez „porrá” kell törnünk és a 100-300 mikrométer nagyságú szemcsék közül ki kell nyernünk a cirkon kristályokat. Ehhez megint jellemző fizikai tulajdonságokat kell segítségül hívni. A cirkon kristály sűrűsége viszonylag nagy, nagyobb, mint általában a kőzeteket alkotó ásványoké. A módszer lényeget tehát, hogy sűrűség szerint választjuk el az apró szemcséket és a legnagyobb sűrűségű szemcsék közé várjuk a cirkon ásványokat. Ez már egy nagy odafigyelést igénylő, több lépcsős, aprólékos munka, ami egyáltalán megalapozza azt, hogy méréseket végezzünk. A vulkáni képződményből kinyert cirkon kristályokon történik az izotópmérés. Azonban mielőtt drága műszerek drága mérési idejét használjuk, pontosan meg kell határozni, hogy mit szeretnénk tudni, egyáltalán minek az idejét szeretnénk meghatározni? Itt pedig nem kerülhetjük meg, hogy ismét ne kanyarodjunk vissza a fizikai alapokhoz!
A cirkon geokronológia háttere
Ahhoz, hogy izotópok mennyiségéből, az adott izotóprendszerre jellemző felezési idő figyelembe vételével meg tudjuk határozni a jókeletkezési időt, fontos feltétel, hogy a keletkezés után az izotópok a kristályba maradjanak, azaz zárt maradjon a rendszer (azaz csak annyi származék izotóp legyen, ami a radioaktív bomlás során keletkezett és annyi instabil izotóp, ami a radioaktív bomlás után visszamaradt). Ez az állapot különböző izotópok, különböző ásványok esetében más és más hőmérséklet elérése után áll be. Ezt a hőmérsékletet záródási hőmérsékletnek nevezzük. Ez pedig egy kulcspont a geokronológiában: a kormeghatározás során azt az időt határozzuk meg, amikor a kristály a záródási hőmérséklet alá hűlt (e hőmérséklet felett ugyanis az izotópok még nem kötődnek meg a kristályban, onnan eltávozhatnak, így mérésükkel nem tudjuk pontosan megmondani, mennyi keletkezett radioaktív bomlással).
Az ásványok keletkezése magmás folyamat során a kőzetolvadékból való kristályosodással történik. A cirkon kristály akkor válik ki, ha a kőzetolvadékban a cirkónium mennyisége már olyan értéket ér el, hogy az olvadék „túltelítetté” válik ebben az elemben. Ez általában 800 Celsius fok alatt történik. A cirkon kristályban kb. 900 Celsius fok alatt már nem távoznak el az U és Pb izotópok, azaz a kristályosodás a záródási hőmérséklet alatt történik. Remek! Ez tehát azt jelenti, hogy a geokronológiai vizsgálattal a cirkon kristályosodás idejét határozhatjuk meg. Nem ez a helyzet a He izotóppal, ami csak 180 Celsius fok alatt marad benn a kristályban. A magmakamrában lévő cirkonból kristályosodása után tehát folyamatosan távozik a radioaktív bomlás során keletkező He. Ahogy azonban vulkánkitörés indul, a 700 Celsius feletti hőmérsékletű magma a felszínre jutva gyorsan lehűl 180 Celsius fok alá. Ekkor tehát záródik már a He is! Amennyiben tehát mérjük a cirkon kristályban lévő He izotópot és az Urán (U) izotópokat, akkor ki tudjuk számolni, hogy a vulkánkitörés óta mennyi idő telt el.
A cirkon kristályok geokronológiai vizsgálata különböző módszerekkel és adott izotóprendszerek különböző ásványokra vonatkoztatott záródási hőmérséklete - a geokronológiában e hőmérséklet alá való hűlés idejét határozzuk meg.
Kiszámolni, kiszámolni… akkor hogyan is határozzuk meg végül az időt? Az elkülönített cirkon kristályokat műgyantába tesszük és addig polírozzuk, amíg feltárul belsejük. Ha egy elektron-mikroszonda műszerrel elektronsugarat bocsátunk rá, akkor láthatjuk is belső felépítésüket: úgy néznek ki, mint az elvágott fák belseje, az „évgyűrűk” ebben az esetben az eltérő környezetben képződött kristálynövekedést jelentik. Az eltérő környezet (hőmérséklet, magma összetétel stb) különböző kémiai összetételű zónákat hoz létre a kristályon belül. A kormeghatározáshoz szükséges izotópok mennyiségét lézer-ablációs ICP-tömegspektrométerrel (ICP=indukciósan csatolt plazma) vagy ionszondával (ekkor oxigén ionsugárral gerjesztjük a mintát, a gerjesztett izotópok itt is tömegspektrométerbe jutnak) mérhetjük. A mérés során ólom és urán izotópok arányát kapjuk meg. A kapott adatok értékelése aztán még egy hosszú folyamat: ismernünk kell a műszer fizikai és kémiai működését, az eredményeket ismert izotópösszetételű mintákkal (sztenderdek) kell összevetnünk, meg kell vizsgálnunk, hogy a kapott adatok alapján valóban fennállhatott a zárt rendszer, stb. A izotóparányokból a felezési idő segítségével, a radioaktív folyamat matematikai egyenletét felhasználva számíthatjuk ki végül a kort, amikor a kristály keletkezett. Így kapunk egy adatsort, mondjuk egy mintából 20-50 egyedi cirkon kristályból mérési eredményeket, különböző korokat. A hélium mérés esetében egy teljes cirkon kristály hélium-izotóp tartalmát mérjük, majd egy másik műszerrel mérjük meg az urán és tórium koncentrációját. A kapott adatokat felhasználva következik a számolás, hogy ez, a radioaktív bomlási folyamat során mennyi idő alatt állhatott elő. Ez egyszerűen hangzik, de mindkét mérés után még hosszadalmas számolások következnek, míg végül eljutunk az áhított eredményhez, egy korhoz, amit szakmailag értelmeznünk kell. A geokronológia tehát nem csak egy egyszerű időt meghatározó, adatközlő tevékenység, hanem egyre inkább egy önálló tudomány, ahol a mérésnek és az azt követő számolásoknak mind nagy szerepe van. Ez elengedhetetlen, hogy a geokronológus által értelmezett kort, aztán be lehessen helyezni egy valamikori történet rekonstruálásába.
A Csomád legfiatalabb képződményén végzett különböző kormeghatározási eszközök adatai eltérő következtetéshez vezetnek: a magmatározó élettartamára és a kitörés korára
Összefoglalóan: az U és Pb izotópok mérésével a cirkon kristályok keletkezési idejét, az U és He izotópok mérésével a vulkánkitörés idejét határozhatjuk meg! Persze, adódhat a kérdés: miért ez nem ugyanaz, időben ez nem közeli folyamatok? Nos, az elmúlt évtized kutatási eredményei világosan rámutatnak: nem, ráadásul ez a két időpont fontos új információt ad! Különböző vulkáni rendszerek esetében ugyanis azt találjuk, hogy a cirkon kristályok keletkezési ideje meglehetősen eltér egymástól, mondhatjuk azt is, hogy szinte mindegyik cirkon kristály máskor keletkezett. Ha ezek időtartamát elemezzük, akkor nem másra következtethetünk, hogy meddig van olyan állapotban a földkéregben, hogy cirkon kristályok válhassanak ki, azaz meddig van olyan állapot, hogy olvadék van jelen a földkéregben, amiben kristályosodás történhet, egyszerűen kifejezve: milyen hosszan áll fenn a magmakamra? Az eredmény pedig első pillanatra meghökkentő: hosszú ez az idő, akár több tíz-, sőt több százezer év a vulkánkitörés előtt! Ezek a geokronológiai vizsgálatok tehát felfedték, hogy a vulkánok alatti magmakamra hosszasan aktív lehet, akkor is, amikor éppen nem működik a tűzhányó, akkor is történhet benne kristályosodás. Vulkánkitörés akkor történik, ha a magmatározóban lévő magma fizikailag kitörésre képes, azaz fizikailag felszínre tud nyomulni, áttörve a felette lévő több kilométer vastag kőzettestet. A Csomád esetében például kimutattuk, hogy az utolsó vulkánkitörés előtt legalább 300 ezer évig létezett az a magmatározó, amiből végül a magma elindult a felszín felé és vulkánkitörést okozott. Ez azonban csak egy kis része a magmatározóban lévő magmának. Még mindig van jócskán, amiből adott esetben egy újabb magmacsomag nyomulhat felfelé és okozhat vulkánkitörést. Amíg a földkéregben van olvadéktartalmú magma, addig ez a lehetőség fennáll! De ez már egy következő történet, ami elvezet a két kutatási eredményhez. Erről szólnak majd a következő blog bejegyzések!
Nincsenek megjegyzések:
Megjegyzés küldése