2018. március 12., hétfő

Piciny cirkon kristályokból kinyert idő: milyen hosszan alszanak a tűzhányók?

Az MTA-ELTE Vulkanológiai Kutatócsoportnak két jelentős tanulmánya jelent meg, amelyekben a közös vonás, hogy régmúlt vulkánkitörések idejét határozták meg és ezek alapján vontak le következtetéseket. A Tűzhányó blog e tudományos munka (ezekben vezető szerepet játszott munkatársam, Lukács Réka és doktorandusz hallgatóm, Molnár Kata) hátterét tárja fel. Az elmúlt héten megjelent blog bejegyzésben először a kormeghatározási munka lényegi elemeit ismertettük, most az egyik tanulmány fő eredményeit mutatjuk be, majd folytatjuk később a másik tanulmánnyal!
Térségünk legfiatalabb tűzhányója a székelyföldi Csomád, amit már több mint egy évtizede kutatunk és aminek eredményeiről a Tűzhányó Blogban is már többször beszámoltunk. A kiindulási pontunk Szakács Sándor kolozsvári geológus-vulkanológus 2002-es konferencia előadása volt, amelyben azt vetette fel, hogy a vulkán még aktivizálódhat. „A kérdés nem annyira abszurd, mint amilyennek látszik” – jegyezte meg Szakács Sanyi. Amiről nem tudunk, nem feltétlenül biztos, hogy nem létezik, amit nem kutatunk, vagy nem merünk kutatni, nem feltétlenül biztos, hogy nem rejt fontos információt akár a társadalomnak is. Elkezdtük tehát a tudományos adatok, megfigyelések gyűjtését, hogy teszteljük Sanyi felvetését. Most pedig már körvonalazódik egy hosszan szunnyadó tűzhányó anatómiája, kórképe. Munkánkban több neves külföldi szakember is részt vesz, ebben különösen fontos a bukaresti Ioan Seghedi vulkanológussal való szoros együttműködés és sok hasznos tanáccsal látott el a helyi Jánosi Csaba is.
A vulkán utoljára 30-32 ezer éve tört ki, azonban számos új kutatási eredmény utal arra, hogy nem tekinthető inaktív tűzhányónak, alatta még lehet olvadéktartalmú magmás test és ezért a lehetőség megvan a további vulkáni kitörésre. Az utolsó kitörés óta eltelt bő 30 ezer év azonban sokaknak hosszú időnek tűnhet. Ha ilyen hosszú ideig nem tört ki egy tűzhányó, akkor az már biztos inaktív, gondolják többen is és ezt látszik igazolni az is, hogy minden nyugodtnak tűnik a térségben.
A Csomád vulkáni együttese fenséges képet nyújt észak felől, belsejében a Szent Anna-tó pedig szintén a szépséget, a nyugalmat tükrözi (Harangi Szabolcs és Fodor István felvételei)

A vulkánok azonban nem így működnek! Egy tűzhányó hajlamát arra, hogy újra kitörjön csak a felszíni megfigyelések alapján nem érthetjük meg. Kutatásaink nagy részt ezért arra irányulnak, hogy a tűzhányó alá nézve tárjuk fel működésének természetét. Tudományos eredményeink alapján egy új elnevezést javasoltunk a Csomádhoz hasonló, hosszan szunnyadó tűzhányókra: PAMS vulkán, azaz potenciálisan aktív magmatározóval rendelkező vulkán (volcano with Potentially Active Magma Storage). Mit takar valójában ez az elnevezés? A vulkanológusok azokat a tűzhányókat nevezik potenciálisan aktívnak, amelyek az elmúlt 10 ezer évben legalább egyszer kitörtek és várható újabb működésük. Sok olyan vulkán van azonban, amelyiknek nem volt kitörése az elmúlt 10 ezer évben és mégis, még a szakemberek sem zárják ki újabb működésüket. A legismertebb példa a Yellowstone, ami utoljára mintegy 70 ezer éve tört ki, a média azonban újra és újra felveti, hogy közeleg nagy kitörése! A PAMS vulkánok tehát azok, amelyek bár nem esnek a potenciálisan aktív tűzhányók kategóriájába és látszólag inaktívak, azonban vannak tudományos megfigyelések arra, hogy alattuk a földkéregben van még magma és ez az olvadéktartalmú magmás anyag megadja a lehetőségét annak, hogy a jövőben vulkáni működés történjék. Az elmúlt években a műholdas radarképek értékelése vezetett oda, hogy a bolíviai Uturuncu vulkán talán mégsem tekinthető inaktívnak annak ellenére, hogy utolsó kitörése mintegy 270 ezer éve volt! Joggal vetődik fel tehát a kérdés, hogy meddig szunnyadhatnak a vulkánok és vajon hosszú, több tíz- vagy százezer év nyugalom után is kitörhetnek?
Kutatócsoportunk új tanulmánya erre a kérdésre adott tudományos adatokkal alátámasztott választ. Molnár Kata doktori témája egy olyan kormeghatározási módszer, ami viszonylag új, különösen fiatal vulkáni kitörések idejének meghatározására. Ahogy az előző héten közreadott blogbejegyzésben írtuk, a geokronológiai vizsgálatokban valójában annak az idejét határozzuk meg, hogy mikor hűlt le a rendszer egy olyan hőmérséklet alá, amikor az izotópok már nem távoznak el az adott ásványból, azaz kialakul a zárt rendszer. Ez minden izotópra és ásványra más hőmérsékleten következik be. Az urán izotópok radioaktív bomlása során felszabaduló hélium 150-180 Celsius fok alatt marad meg a cirkon kristályban. A cirkon kristályokban lévő hélium és urán izotópok mérése alapján, a radioaktív bomlás, a hélium izotóp kilökődési hatása, valamint az izotópok kristályba való belépési viszonya alapján kiszámolhatjuk, hogy mikor történt ez a záródás, mikor történt ez a lehűlés. Ez pedig nem más, mint maga a vulkáni működés ideje, amikor a magma több mint 700 Celsius fokos hőmérsékletről a felszínre törve hirtelen 150 Celsius fok alá hűlt. Szerencsére a csomádi vulkáni kőzetekben bőségesen van cirkon kristály, így meghatározható a kitörési kor!
Ezekből a piciny kristályokból, melyek mérete akkor mint a hajszál vastagsága, határozható meg a vulkánkitörések kora. Jobbra a Bálványos, ami az új kutatási eredmény alapján 583 ezer éve keletkezett egy lassú lávakitüremkedés során (Molnár Kata és Harangi Szabolcs felvételei)

A Csomád vulkáni terület remek lehetőséget ad arra, hogy ne csak a vulkánkitörések idejét, hanem a kitörések közötti szunnyadási időszakok hosszát is meghatározzuk. A Csomád egy vulkáni mező tagja, egy hosszú ideje tartó vulkáni működés eddigi legutolsó epizódját adja. Kezdetben kisebb láva kitüremkedések történtek, a nehezen folyó dácitos magma nem tudott szétfolyni, hanem csak dagadt, dagadt kifelé és egy meredek oldalú kupacot hozott létre. Ezeket dagadókúpoknak nevezzük. A vulkánkitörések nem egy helyen, hanem elszórtan történtek, mint mezőn a vakondtúrások. Így keletkeztek a Bálványos, a Büdös-hegy, a Nagy-Hegyes és a Bába Laposa kúp alakú vulkáni hegyei. Számunkra ez szerencsés helyzetet adott, mert így minden kitörés képződményét megmintázhattuk és meghatározhattuk a vulkáni működések idejét. Korábban Szakács Sándor, Ioan Seghedi és Pécskay Zoltán végzett kormeghatározást több vulkáni kőzeten, ők egy másik geokronológiai módszert használtak, a kálium és argon izotópok mérése alapján arra következtettek, hogy ezek a lávadómok 500 ezer és 2 millió év közötti időszakban jöttek létre, maga a Csomád vulkáni komplexuma pedig mintegy 500 ezer éve kezdődött kialakulni. Új koradataink arra utalnak, hogy minden fiatalabb, mint azt korábban gondolták! A kálium és argon izotópokon alapuló rendszer esetében problémát jelenthetett az, hogy az ásványokba olyan argon is beépülhetett, ami nem radioaktív bomlásból származott, ezért jöttek ki idősebb korok.
A cirkon urán-hélium kormeghatározás esetében egy másik geokronológiai eszközt is használtunk. Az urán-ólom és urán-tórium izotóp mérésekkel a cirkon kristályok képződési idejét határoztuk meg. Ez utóbbiak segítségével megtudtuk, hogy mi az a kor, aminél a kitörési idő csak fiatalabb lehet. Ezt az időt végül a hélium és urán izotópok alapján számolt koradatok alapján pontosítottuk: így például megtudtuk, hogy a népszerű kirándulóhelynek számító Bálványos 583 ezer, a Büdös-hegy pedig 642 ezer éve keletkezett (30, ill. 40 ezer éves hibahatáron belül), a Csomád mellett emelkedő Nagy-Hegyes pedig 842 ezer éves kitörés emlékét őrzi. Rámutatunk arra is, hogy a Csomád körüli vulkáni lávadóm mező első kitörései nem több mint 1 millió éve voltak. Mindezt nem csak a koradatok, hanem a vulkáni kőzetek kémiai összetétele alapján is bizonyítani tudtuk. A vulkáni kitörések között pedig akár több mint 100 ezer év is eltelhetett! Maga a Csomád vulkáni komplexuma is úgy tűnik több, mint 100 ezer éves nyugalom után kezdett kialakulni. Az első kitörések 150-170 ezer éve voltak, majd tartottak kb. 100 ezer évvel ezelőttig. Akkor megint több tízezer éves szünet következhetett. A vulkáni működés aztán heves robbanásos kitörésekkel újult fel és ez az 57-32 ezer évvel ezelőtti időszak volt eddig az utolsó aktív vulkáni működési felvonás. Kérdés, hogy felgördül-e még újra a függöny, hogy legyen folytatás!
Balra a Nagy-Hegyes lávadómja, ami 842 ezer éve keletkezhetett, valahogy így, mint a karibi Soufriére Hills dagadókúpja (Harangi Szabolcs és Richard Roscoe felvételei)

A vulkáni kitörési korokból tehát összeállt a kép, mégpedig egy meglehetősen lustán működő vulkáni terület képe. Az aktív kitörési szakaszokat hosszú idő, nem egyszer több mint 100 ezer éves nyugalmi időszakaszok választották el egymástól! Más szóval, a vulkáni működés még több mint 100 ezer éves nyugalom után is felújult! Ez pedig tudományos adatokkal támasztja alá, hogy csak abból ítélni, hogy milyen hosszú ideje, például több tízezer éve nem működik egy vulkán, nem lehet, az nem jelenti azt, hogy a tűzhányó már inaktívvá vált! Ennyire részletes koradatokkal, jól elkülöníthető vulkánkitörések idejének meghatározásával még nem sok munka jelent meg a vulkánok szunnyadási időszakok hosszára, ezért új tudományos eredményünk nagy fontosságú ebben a témában. Ráirányítja a hosszan szunnyadó vulkánok kutatására figyelmet, hiszen ezek a tűzhányók különösen nagy potenciális veszélyt jelentenek a társadalomra, mivel olyan vulkánokról van szó, amelyek esetében nem sokan gondolnák, hogy kitörhetnek, így esetleges működésük felkészületlenül érheti a környező lakosságot. Márpedig ilyenre van példa a történelmi időkből: a globális kihatású és súlyos következményekkel járó Tambora 1815-ös kitörése legalább ezer, de nem kizárt, hogy több mint 4000 éves nyugalmi idő után történt. A mexikói El Chichon 1982-es kitörése előtt nem gondolták, hogy a fákkal sűrűn borított hegy még veszélyt jelenthet, aztán heves robbanásos kitörése több mint 3000 áldozatot szedett. A szumátrai Sinabungról sem gondolták 2010 előtt, hogy még kitörhet, nem is állt megfigyelés alatt, hiszen nem volt bizonyított kitörése az elmúlt 10 ezer évből (ez persze fakadhat abból is hogy nem történtek pontos kormeghatározási vizsgálatok a kőzetein). 2010-ben aztán váratlanul kitört, most pedig a Föld egyik legaktívabb és legveszélyesebb tűzhányója.
A székelyföldi Csomád kutatása hozzájárulhat ahhoz, hogy jobban megértsük, miért alszanak ilyen hosszan a tűzhányók és miért ébrednek fel hosszú "csipkerózsika álmukból", mi játszódik a mélyben, hogy elkövetkezzen ez a pillanat! Jelenleg nem utal semmi arra, hogy a Csomád közelgő kitörés előtt áll! Azonban ez a látszólagos nyugalom nem jelenti azt sem, hogy ez mindig így marad. A mélybeli magmakamra folyamatok megértésével kutatásaink segítik azt, hogy tudjuk milyen jelek várhatók egy esetleges kitörés előtt és bízzunk benne, hogy e jeleket majd műszerek is foghatják!
A Csomád vulkáni lávadóm mező kitörési kronológiája a szunnyadási időszakok hosszával kutatócsoportunk szabadon letölthető, új tudományos eredményei alapján


Best Blogger Tips

2018. március 9., péntek

Piciny cirkon kristályokból kinyert idő: régmúlt vulkánkitörések idejének meghatározása

Az MTA-ELTE Vulkanológiai Kutatócsoportnak két jelentős tanulmánya jelent meg, amelyben a közös vonás, hogy régmúlt vulkánkitörések idejét határozták meg és ezek alapján vontak le következtetéseket. A Tűzhányó blog e tudományos munka (ezekben vezető szerepet játszott munkatársam, Lukács Réka és doktorandusz hallgatóm, Molnár Kata) hátterét tárja fel, először ismertetve a kormeghatározási munka lényegi elemeit, majd a következő két blog bejegyzésben az új koradat eredményeken alapuló következtetéseket mutatjuk be.
Hogyan lehet meghatározni a földtörténeti múlt eseményeinek idejét? Izgalmas kérdés mindez és számtalan tudományterülethez ad nélkülözhetetlen adatokat. A kormeghatározás fizikai háttere a radioaktív bomlás folyamata, amit bő egy évszázada fedeztek fel. Nem sokkal a felfedezés után már megindult a földtudományi alkalmazása, urán tartalmú ásványok korát határozták meg, majd a figyelem gyorsan egy egyszerűnek kérdés megválaszolása felé fordult: milyen idős a Föld? Arthur Holmes könyve a Föld koráról forradalmi változást indított el (és kezdetben persze nem kevés felzúdulást, ellenállást, vitát váltott ki).
A rádium izotóp alfa-részecske kilökődésével járó radioaktív bomlása és a 238 tömegszámú U izotóp többlépcsős radioaktív bomlási sora, aminek végén 206 tömegszámú ólom izotóp képződik

A radioaktív bomlás elsősorban a nagy tömegszámú izotópok esetében lép fel, amikor egy elem neutronban viszonylag gazdag vagy szegény, ezért nem stabil izotópja (izotópnak nevezzük egy adott elem különböző neutronszámú, azaz tömegszámú atomjait) energia felszabadulás közben bomlik és ennek során egy másik elem izotópja keletkezik. A radioaktív bomlás időbeni lejátszódása egy állandó folyamat, a felezési idő megadja, hogy mennyi idő alatt bomlik le a kezdetben jelenlévő összes radiogén atommag fele. A különböző radioaktív folyamatok (adott bomló izotóp és keletkező izotóp rendszerére vonatkoztatva) felezési ideje nagy pontosággal meghatározható és ez adja alapját a kormeghatározásnak.
A kormeghatározás, azaz egy földtörténeti múltbeli esemény idejének meghatározása (ezt geokronológiának nevezik) során nem időt mérünk, hanem vizsgáljuk egy adott képződményben a radioaktívan bomló és a radioaktív bomlás során keletkező izotópok mennyiségét. A földtudományban olyan izotóp párokat használnak e célból, amelyek (1) felezési ideje nagy (jellemzően több százmillió év vagy ennél is nagyobb) , azaz nem bomlott le még az összes instabil izotóp; (2) mind a bomló, mind a keletkező izotóp mennyisége mérhető nagyságban van; (3) nagy pontossággal ismert a felezési idő. A különböző izotóp párok közül manapság a leggyakrabban az urán és tórium instabil izotópjait és a radioaktív bomlás során keletkező ólom izotópokat mérik, e mellett azonban még számos gyakran használt izotóprendszer van, mint például a Kálium és Argon izotóprendszer. Ha a felezési idő kicsi, akkor időben csak korlátozottan tudunk „visszalátni”, azaz csak egy meghatározott földtörténeti korig tudjuk meghatározni egy esemény bekövetkezésének idejét. Ilyen rendszer például a szénizotópos módszer, ahol a radioaktívan bomló izotóp a szén 14 tömegszámú atomja. A felezési idő ebben az esetben 5730 év, ami azt jelenti, hogy legfeljebb 50 ezer évvel ezelőtti esemény korát tudjuk meghatározni. Ugyanakkor, ez a kormeghatározás pontos adatot ad a „közelmúlt” eseményeinek idejéről, amikor a nagy felezési idejű izotóprendszerek nem alkalmazhatók, mert még nem telt el annyi idő, hogy mérhető mennyiségű származék izotóp keletkezzen a lassú folyamat során. A szénizotópos kormeghatározáshoz azonban kell a szén, azaz szerves anyag. Vulkáni működések korát vagy a vulkáni képződménybe zárt, a magas hőmérséklet miatt elszenesedett növénymaradványokon határozzák meg vagy a vulkáni képződmény alatt lévő talajban található szerves anyagot használják fel erre. Térségünk legutolsó vulkánkitöréseinek idejét szénizotópos módszerrel határoztuk meg. Elsőként a japán Moriya és kutatótársai közöltek pontos szénizotópos kor adatokat, majd Harangi Szabolcs Molnár Mihállyal és kutatótársaikkal együttműködve határozták meg a legfiatalabb kitörés korát a székelyföldi Csomád vulkáni képződményében talált szenesedett famaradványok elemzése során. Innen tudjuk, hogy az utolsó vulkáni működés a jelenlegi koradatok alapján 31230 és 32700 éve volt.
A székelyföldi Csomád eddig ismert legfiatalabb vulkáni képződménye, amelyben szenesedett famaradványok találhatók. Ezek szénizotópos vizsgálata segített meghatározni a vulkáni működés korát

Az 50 ezer évnél régebben történt vulkánkitörések esetében manapság a legelterjedtebben használt geokronológiai módszer a cirkon kristályokon végzett kormeghatározás. Miért pont a cirkon, ami egy cirkónium-szilikát ásvány és első pillantásra nem látunk benne radioaktívan bomló izotópot? Az ásványok kristályrácsába a fő alkotókon kívül, elemhelyettesítéssel beépülhetnek nyomnyi mennyiségben idegen elemek is, ha azok ionjainak mérete és töltése közel van a fő komponenséhez. A cirkon ásványban így a cirkóniumot helyettesíteni tudja a hafnium, továbbá az urán és tórium is. Az uránnak két radioaktívan bomló, instabil izotópja van, a 238 és 235 tömegszámú izotópok, míg a tórium izotópjai közül a 232 tömegszámú atom stabilizálódik radioaktív bomlással. Érdekes módon mindhárom esetben a származék izotóp az ólom valamelyik tömegszámú atomja, a 206, a 207, illetve a 208 tömegszámú izotóp. A radioaktív bomlás ezekben az esetekben nem egy egyszerű folyamat, hanem több lépcsőben megy végbe és közben hélium (He) atommagok szabadulnak fel (ezt alfa-sugárzásnak nevezzük). A He atom 4 tömegszámú, azaz a teljes radioaktív bomlási folyamat során: 8, 7, illetve 6 He atom szabadul fel.
Ezek a nagyon leegyszerűsített fizikai alapok, azonban hogyan lesz ebből egy régmúlt esemény idejének meghatározása? Mit kell a geokronológusnak tenni? A cirkon egy ideális ásvány, mivel van benne mérhető mennyiségű urán, így idő elteltével a radioaktív bomlás során egyre több ólom izotóp (és He izotóp) keletkezik. A modern analitikai műszerekkel már kis mennyiségben is nagy pontosággal mérhetők az izotópok mennyisége vagy izotóparányok értéke. Sőt, most már ott tartunk, hogy lézersugár vagy ionsugár alkalmazásával már nagyon kis mennyiségű anyagból is lehet izotóp meghatározást végezni. Ez pedig egy óriási előrelépés! A cirkon kristályok önmagukban is picinyek, méretük az emberi hajszál átmérőjéhez hasonló: általában 100-300 mikrométer (azaz 0,01-0,03 milliméter). A műszeres technika ma már lehetővé teszi, hogy e piciny ásványokat lézeres vagy ionsugaras nyalábbal gerjesszük, ezzel egy akár egy 30-40 mikrométer átmérőjű területről is tudunk elegendő anyagot a tömegspektrométerbe juttatni, ahol az izotópok mérése történik. Ez azt jelenti, hogy akár megtudjuk mérni az ásvány középső és szélső részének is az izotóparányait, azaz megtudjuk határozni a keletkezés korát. A kérdés azonban még mindig az, hogy miképpen jutunk az izotópok mennyiségéből az időhöz?
Az első lépést az jelenti, hogy egyáltalán össze kell gyűjteni e piciny kristályokat! A kőzeteket ehhez „porrá” kell törnünk és a 100-300 mikrométer nagyságú szemcsék közül ki kell nyernünk a cirkon kristályokat. Ehhez megint jellemző fizikai tulajdonságokat kell segítségül hívni. A cirkon kristály sűrűsége viszonylag nagy, nagyobb, mint általában a kőzeteket alkotó ásványoké. A módszer lényeget tehát, hogy sűrűség szerint választjuk el az apró szemcséket és a legnagyobb sűrűségű szemcsék közé várjuk a cirkon ásványokat. Ez már egy nagy odafigyelést igénylő, több lépcsős, aprólékos munka, ami egyáltalán megalapozza azt, hogy méréseket végezzünk. A vulkáni képződményből kinyert cirkon kristályokon történik az izotópmérés. Azonban mielőtt drága műszerek drága mérési idejét használjuk, pontosan meg kell határozni, hogy mit szeretnénk tudni, egyáltalán minek az idejét szeretnénk meghatározni? Itt pedig nem kerülhetjük meg, hogy ismét ne kanyarodjunk vissza a fizikai alapokhoz!
A cirkon geokronológia háttere

Ahhoz, hogy izotópok mennyiségéből, az adott izotóprendszerre jellemző felezési idő figyelembe vételével meg tudjuk határozni a jókeletkezési időt, fontos feltétel, hogy a keletkezés után az izotópok a kristályba maradjanak, azaz zárt maradjon a rendszer (azaz csak annyi származék izotóp legyen, ami a radioaktív bomlás során keletkezett és annyi instabil izotóp, ami a radioaktív bomlás után visszamaradt). Ez az állapot különböző izotópok, különböző ásványok esetében más és más hőmérséklet elérése után áll be. Ezt a hőmérsékletet záródási hőmérsékletnek nevezzük. Ez pedig egy kulcspont a geokronológiában: a kormeghatározás során azt az időt határozzuk meg, amikor a kristály a záródási hőmérséklet alá hűlt (e hőmérséklet felett ugyanis az izotópok még nem kötődnek meg a kristályban, onnan eltávozhatnak, így mérésükkel nem tudjuk pontosan megmondani, mennyi keletkezett radioaktív bomlással).
Az ásványok keletkezése magmás folyamat során a kőzetolvadékból való kristályosodással történik. A cirkon kristály akkor válik ki, ha a kőzetolvadékban a cirkónium mennyisége már olyan értéket ér el, hogy az olvadék „túltelítetté” válik ebben az elemben. Ez általában 800 Celsius fok alatt történik. A cirkon kristályban kb. 900 Celsius fok alatt már nem távoznak el az U és Pb izotópok, azaz a kristályosodás a záródási hőmérséklet alatt történik. Remek! Ez tehát azt jelenti, hogy a geokronológiai vizsgálattal a cirkon kristályosodás idejét határozhatjuk meg. Nem ez a helyzet a He izotóppal, ami csak 180 Celsius fok alatt marad benn a kristályban. A magmakamrában lévő cirkonból kristályosodása után tehát folyamatosan távozik a radioaktív bomlás során keletkező He. Ahogy azonban vulkánkitörés indul, a 700 Celsius feletti hőmérsékletű magma a felszínre jutva gyorsan lehűl 180 Celsius fok alá. Ekkor tehát záródik már a He is! Amennyiben tehát mérjük a cirkon kristályban lévő He izotópot és az Urán (U) izotópokat, akkor ki tudjuk számolni, hogy a vulkánkitörés óta mennyi idő telt el.
A cirkon kristályok geokronológiai vizsgálata különböző módszerekkel és adott izotóprendszerek különböző ásványokra vonatkoztatott záródási hőmérséklete - a geokronológiában e hőmérséklet alá való hűlés idejét határozzuk meg.

Kiszámolni, kiszámolni… akkor hogyan is határozzuk meg végül az időt? Az elkülönített cirkon kristályokat műgyantába tesszük és addig polírozzuk, amíg feltárul belsejük. Ha egy elektron-mikroszonda műszerrel elektronsugarat bocsátunk rá, akkor láthatjuk is belső felépítésüket: úgy néznek ki, mint az elvágott fák belseje, az „évgyűrűk” ebben az esetben az eltérő környezetben képződött kristálynövekedést jelentik. Az eltérő környezet (hőmérséklet, magma összetétel stb) különböző kémiai összetételű zónákat hoz létre a kristályon belül. A kormeghatározáshoz szükséges izotópok mennyiségét lézer-ablációs ICP-tömegspektrométerrel (ICP=indukciósan csatolt plazma) vagy ionszondával (ekkor oxigén ionsugárral gerjesztjük a mintát, a gerjesztett izotópok itt is tömegspektrométerbe jutnak) mérhetjük. A mérés során ólom és urán izotópok arányát kapjuk meg. A kapott adatok értékelése aztán még egy hosszú folyamat: ismernünk kell a műszer fizikai és kémiai működését, az eredményeket ismert izotópösszetételű mintákkal (sztenderdek) kell összevetnünk, meg kell vizsgálnunk, hogy a kapott adatok alapján valóban fennállhatott a zárt rendszer, stb. A izotóparányokból a felezési idő segítségével, a radioaktív folyamat matematikai egyenletét felhasználva számíthatjuk ki végül a kort, amikor a kristály keletkezett. Így kapunk egy adatsort, mondjuk egy mintából 20-50 egyedi cirkon kristályból mérési eredményeket, különböző korokat. A hélium mérés esetében egy teljes cirkon kristály hélium-izotóp tartalmát mérjük, majd egy másik műszerrel mérjük meg az urán és tórium koncentrációját. A kapott adatokat felhasználva következik a számolás, hogy ez, a radioaktív bomlási folyamat során mennyi idő alatt állhatott elő. Ez egyszerűen hangzik, de mindkét mérés után még hosszadalmas számolások következnek, míg végül eljutunk az áhított eredményhez, egy korhoz, amit szakmailag értelmeznünk kell. A geokronológia tehát nem csak egy egyszerű időt meghatározó, adatközlő tevékenység, hanem egyre inkább egy önálló tudomány, ahol a mérésnek és az azt követő számolásoknak mind nagy szerepe van. Ez elengedhetetlen, hogy a geokronológus által értelmezett kort, aztán be lehessen helyezni egy valamikori történet rekonstruálásába.
A Csomád legfiatalabb képződményén végzett különböző kormeghatározási eszközök adatai eltérő következtetéshez vezetnek: a magmatározó élettartamára és a kitörés korára

Összefoglalóan: az U és Pb izotópok mérésével a cirkon kristályok keletkezési idejét, az U és He izotópok mérésével a vulkánkitörés idejét határozhatjuk meg! Persze, adódhat a kérdés: miért ez nem ugyanaz, időben ez nem közeli folyamatok? Nos, az elmúlt évtized kutatási eredményei világosan rámutatnak: nem, ráadásul ez a két időpont fontos új információt ad! Különböző vulkáni rendszerek esetében ugyanis azt találjuk, hogy a cirkon kristályok keletkezési ideje meglehetősen eltér egymástól, mondhatjuk azt is, hogy szinte mindegyik cirkon kristály máskor keletkezett. Ha ezek időtartamát elemezzük, akkor nem másra következtethetünk, hogy meddig van olyan állapotban a földkéregben, hogy cirkon kristályok válhassanak ki, azaz meddig van olyan állapot, hogy olvadék van jelen a földkéregben, amiben kristályosodás történhet, egyszerűen kifejezve: milyen hosszan áll fenn a magmakamra? Az eredmény pedig első pillanatra meghökkentő: hosszú ez az idő, akár több tíz-, sőt több százezer év a vulkánkitörés előtt! Ezek a geokronológiai vizsgálatok tehát felfedték, hogy a vulkánok alatti magmakamra hosszasan aktív lehet, akkor is, amikor éppen nem működik a tűzhányó, akkor is történhet benne kristályosodás. Vulkánkitörés akkor történik, ha a magmatározóban lévő magma fizikailag kitörésre képes, azaz fizikailag felszínre tud nyomulni, áttörve a felette lévő több kilométer vastag kőzettestet. A Csomád esetében például kimutattuk, hogy az utolsó vulkánkitörés előtt legalább 300 ezer évig létezett az a magmatározó, amiből végül a magma elindult a felszín felé és vulkánkitörést okozott. Ez azonban csak egy kis része a magmatározóban lévő magmának. Még mindig van jócskán, amiből adott esetben egy újabb magmacsomag nyomulhat felfelé és okozhat vulkánkitörést. Amíg a földkéregben van olvadéktartalmú magma, addig ez a lehetőség fennáll! De ez már egy következő történet, ami elvezet a két kutatási eredményhez. Erről szólnak majd a következő blog bejegyzések!

Best Blogger Tips